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ABSTRACT

Estimating instantaneous energetic cost during gait adaptation

Report Title

Respiratory measures of oxygen and carbon dioxide are routinely used to estimate the body’s

2 steady-state metabolic energy use. However, slow mitochondrial dynamics, long transit times, complex

3 respiratory control mechanisms, and high breath-by-breath variability obscure the relationship between

4 the body’s instantaneous energy demands (instantaneous energetic cost) and that measured from

5 respiratory gases (measured energetic cost). The purpose of this study was to expand on traditional

6 methods of assessing metabolic cost by estimating instantaneous energetic cost during gait adaptation

7 and other non-steady state conditions. To accomplish this goal, we first imposed known changes in

8 energy use (input), while measuring the breath-by-breath response (output). We used these input/output

9 relationships to model the body as a dynamic system that maps instantaneous to measured energetic

10 cost. We found that a first-order linear differential equation well approximates transient energetic cost

11 responses during gait. Across all subjects, model fits were parameterized by an average time constant

12 (?) of 42 ± 12 s with an average R2 of 0.94 ± 0.05 (mean ± SD). Armed with this input/output model,

13 we next tested whether we could use it to reliably estimate instantaneous energetic cost from breath-by-

14 breath measures under conditions that simulated dynamically changing gait. A comparison of the

15 imposed energetic cost profiles and our estimated instantaneous cost demonstrated a close

16 correspondence, supporting the use our methodology to study the role of energetics during locomotor

17 adaptation and learning.
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Abstract. Respiratory measures of oxygen and carbon dioxide are routinely used to estimate the body’s 1	
  

steady-state metabolic energy use. However, slow mitochondrial dynamics, long transit times, complex 2	
  

respiratory control mechanisms, and high breath-by-breath variability obscure the relationship between 3	
  

the body’s instantaneous energy demands (instantaneous energetic cost) and that measured from 4	
  

respiratory gases (measured energetic cost). The purpose of this study was to expand on traditional 5	
  

methods of assessing metabolic cost by estimating instantaneous energetic cost during gait adaptation 6	
  

and other non-steady state conditions. To accomplish this goal, we first imposed known changes in 7	
  

energy use (input), while measuring the breath-by-breath response (output). We used these input/output 8	
  

relationships to model the body as a dynamic system that maps instantaneous to measured energetic 9	
  

cost. We found that a first-order linear differential equation well approximates transient energetic cost 10	
  

responses during gait. Across all subjects, model fits were parameterized by an average time constant 11	
  

(τ) of 42 ± 12 s with an average R2 of 0.94 ± 0.05 (mean ± SD). Armed with this input/output model, 12	
  

we next tested whether we could use it to reliably estimate instantaneous energetic cost from breath-by-13	
  

breath measures under conditions that simulated dynamically changing gait. A comparison of the 14	
  

imposed energetic cost profiles and our estimated instantaneous cost demonstrated a close 15	
  

correspondence, supporting the use our methodology to study the role of energetics during locomotor 16	
  

adaptation and learning.  17	
  

 18	
  

Key words: energetics, gait, adaptation, indirect calorimetry, metabolic cost 19	
  

  20	
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1. INTRODUCTION 21	
  

Steady state measurements of metabolic energetic cost have provided valuable insight into why and 22	
  

how we walk the way we do. Energetic cost, in this context, refers to the input energy required to 23	
  

power the cellular processes underlying the body’s movement. This energy is liberated from glucose, 24	
  

fats, and other stored foodstuffs in a reaction that requires oxygen and produces carbon dioxide (3). 25	
  

Consequently, energetic cost is typically measured indirectly by quantifying the oxygen and carbon 26	
  

dioxide in respiratory gases (2, 16). These measurements have demonstrated that we select the most 27	
  

fundamental characteristics of our gait—such as speed, step frequency and step width—so as to 28	
  

minimize energetic cost per distance travelled (4, 5, 8, 9, 17, 23, 29, 35, 36, 40). Cost measurements 29	
  

have also allowed the quantification of energetic penalties imposed by various gait disabilities, and the 30	
  

evaluation of the effectiveness of rehabilitation interventions at mitigating these added costs (5, 35, 36). 31	
  

Equipment and wearable devices, be it backpacks (12, 15), prosthetics (25, 41), orthoses (10, 24), or 32	
  

running shoes (6), have been assessed, iteratively designed, and ultimately improved based on cost 33	
  

measurements.  34	
  

The relationship between the body’s instantaneous energy demands (instantaneous energetic cost) and 35	
  

that measured from respiratory gases (measured energetic cost) is complicated. Consider, for example, 36	
  

oxygen consumption measured at the mouth. Muscles meet their instantaneous energy demands for 37	
  

force generation using ATP, a form of stored energy. While ATP is immediately replenished using 38	
  

another form of stored energy, creatine phosphate, the mitochondrial dynamics that use oxygen and 39	
  

foodstuffs to replenish creatine phosphate are rather slow (1, 7, 22, 30). There are still further delays 40	
  

before mitochondrial oxygen consumption is reflected in respiratory gases due to blood circulation 41	
  

from muscle to lungs (13), oxygen exchange between the blood and the lungs, and then lung ventilation 42	
  

itself. The relationship between instantaneous and measured cost cannot be determined by simply 43	
  

adding up these component time delays because blood gases are under tight neural control (28), and 44	
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these controllers impose their own dynamics. For example, rapid increases in ventilation are often seen 45	
  

at the onset of exercise (28), preloading the body in anticipation of future mitochondrial oxygen 46	
  

requirements. Consequently, energetic cost as measured at the mouth can occur in advance of any 47	
  

actual energy use by muscle. An additional complicating factor is the discrete nature of breathing—48	
  

while muscles may be continuously consuming the body’s oxygen, the lungs only replenish oxygen 49	
  

with each breath and each breath may be of drastically different volume. Irregularities in both depth 50	
  

and timing of breaths create noisy breath-by-breath estimates of energetic cost that do not reflect true 51	
  

fluctuations in muscle energy use (14, 20). In summary, the relationship between instantaneous and 52	
  

measured energetic cost is complicated by mitochondrial dynamics, body transit delays, and respiratory 53	
  

control mechanisms, and then further obscured by high breath-by-breath variability.  54	
  

It is due to these complexities that energetic cost is traditionally only measured during long bouts of 55	
  

constant intensity conditions. By discounting non-steady state regions of cost measurements, the rate at 56	
  

which the oxygen is entering the body is allowed to reach equilibrium with the rate at which cellular 57	
  

processes are consuming it. By averaging over minutes of data, high breath-by-breath ‘noise’ is 58	
  

overcome and the measured energetic cost then accurately matches the instantaneous energetic cost. 59	
  

While these processing techniques have served us well over the past century, they restrict the research 60	
  

questions that can be effectively answered. Long-duration steady-state conditions, such as those 61	
  

experienced on a treadmill, are the exception rather than the norm during real-world walking (21). In 62	
  

truth, we are continually adjusting our gait to meet the demands of a changing environment and the 63	
  

energetic cost under these real-world conditions is essentially unknown.   64	
  

Here, we expand on traditional methods of assessing energetic cost with the primary purpose of 65	
  

developing a technique to estimate instantaneous energetic cost during gait adaptation. We first 66	
  

characterized the dynamic relationship between instantaneous and measured energetic cost during 67	
  

walking. To accomplish this, we enforced known changes in instantaneous energy use (input)—by 68	
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prescribing changes to subjects’ walking speed and step frequency—and measured the respiratory 69	
  

responses in measured energetic cost (output; Figure 1A). We then modeled the body as a dynamic 70	
  

system that maps instantaneous to measured energetic cost (Figure 1B). Next, we used this model to 71	
  

test two approaches for estimating instantaneous energy use from respiratory measures. The inverse 72	
  

model approach is perhaps the most intuitive—the actual measured energetic cost is smoothed and then 73	
  

passed through the inverse of the identified model to produce an estimate of the instantaneous energetic 74	
  

cost (Figure 1C). The forward model approach estimates instantaneous energetic cost as the input that 75	
  

when passed forward through the identified model produces an estimate of measured cost that best fits 76	
  

the actual measured energetic cost response (Figure 1D).  77	
  

2. METHODS 78	
  

Ten adult subjects (body mass: 67.1 ± 6.0 kg; height: 173.7 ± 5.2 cm; mean ± SD) with no known 79	
  

musculoskeletal or cardio-pulmonary impairments participated in this study. Simon Fraser University’s 80	
  

Office of Research Ethics approved the protocol, and participants gave their written, informed consent 81	
  

before experimentation. Experiments were performed over two or three days, with no more than two 82	
  

hours of walking per day to reduce fatigue effects.  83	
  

2.1 Enforcing rapid changes in instantaneous energetic cost 84	
  

Subjects were instrumented with indirect calorimetry (VMax Encore Metabolic Cart, ViaSys, IL, USA) 85	
  

and all walking was performed on an instrumented treadmill (FIT, Bertec Corporation, MA, USA). To 86	
  

habituate subjects to the experimental set up, they walked at a range of treadmill walking speeds (0.75, 87	
  

1.00, 1.25, 1.5, and 1.75 m/s) for a minimum of 10-minutes at each speed (31, 33, 34). Subjects next 88	
  

completed a series of enforced rapid changes in gait. The treadmill speed (walking speed) and 89	
  

metronome frequency (step frequency) were rapidly and simultaneously increased or decreased using 90	
  

custom written software (Simulink Real-Time Workshop, Mathworks Inc., MA, USA), in order to 91	
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evoke a step-like change in instantaneous energetic cost (Figure 1A). We chose to not only alter speed, 92	
  

but also step frequency because people often take tens of seconds to adjust their step frequency to 93	
  

steady state following perturbations in treadmill walking speed (27, 33). Metronome frequency was set 94	
  

at the subjects’ preferred step frequency at each speed, defined as the average step frequency during the 95	
  

final 3-minutes of walking in the habituation trials. Step frequency for an individual step was calculated 96	
  

as the inverse of the time between foot contact events, identified from the characteristic rapid fore-aft 97	
  

translation in ground reaction force center of pressure (32). The treadmill speed alternated between 6-98	
  

minute periods at a base speed of 1.25m/s and 6-minute periods above or below this base speed (1.5 or 99	
  

1.75 m/s, and 0.75 and 1.00 m/s, respectively). This resulted in eight different changes in gait 100	
  

(conditions), including step-like changes up-to and down-from the non-base speeds of 0.75, 1.00, 1.5, 101	
  

1.75 m/s. Speed presentation order was randomized. We designed these changes to have differing 102	
  

direction (increase or decrease in speed) and magnitude (absolute speed change of 0.25 or 0.50 m/s) in 103	
  

order to test if the identified energetic cost dynamics differed across conditions. To compensate for the 104	
  

variable nature of breath-by-breath measurements and to further control for order effects, we had 105	
  

subjects complete a second day of testing in which they repeated the enforced gait changes twice with a 106	
  

newly randomized order, giving us a total of three repeats for each of the eight conditions. 107	
  

2.2 Modeling the relationship between instantaneous and measured energetic cost 108	
  

Whipp, Wasserman and colleagues have previously modeled ventilatory gas dynamics during non-109	
  

steady state cycling (37, 39). Given step changes in work rate, they found the oxygen uptake and 110	
  

carbon dioxide output could be well described by first-order differential equations with an 111	
  

accompanying time delay. Here, we use their model as a starting point for our modeling efforts while 112	
  

recognizing that gas kinetics during walking and cycling are not constrained to have identical 113	
  

dynamics. We modeled the relationship between the instantaneous energetic cost (our input) and the 114	
  

measured cost (our output) as a single dynamic process comprising a time-delayed first-order linear 115	
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ordinary differential equation. The mathematical representation of this model expressed in the 116	
  

frequency domain, takes the form:  117	
  

𝑌 𝑠 = 𝐻(𝑠)𝑋(𝑠),  (1) 118	
  

where 119	
  

𝐻 𝑠 = !
!"!!

𝑒!!",  (2) 120	
  

𝑋(𝑠) is the input instantaneous energetic cost, and 𝑌 𝑠  is the output measured energetic cost. The 121	
  

parameter 𝜏 is a time constant characterizing the rate of change, 𝐴 represents the amplitude of the 122	
  

change, and 𝛿 is a time delay. One may understand this model as a low-pass filter, where a rapid 123	
  

change in input (instantaneous energetic cost) will result in a slow and smoothed output response 124	
  

(measured energetic cost), and the amount of slowing and smoothing will increase with the magnitude 125	
  

of 𝜏. Thus, if one were to see very quick changes in measured respiratory energetic cost, it would mean 126	
  

there was an exceptionally large and rapid change in the underlying instantaneous energetic cost.  One 127	
  

might also understand this model in terms of its response to a step input, where the produced response 128	
  

would take the form of an exponential rise to steady state with a delay between the step input and the 129	
  

beginning of the response. 130	
  

To fit this model to our data, we analyzed three minutes of metabolic data prior to each gait change and 131	
  

six minutes of data following the gait change. The magnitude of each trial was normalized to unity to 132	
  

allow us to compare and average the steps of differing magnitude and direction. To accomplish this 133	
  

normalization, we first subtracted the steady-state value before the gait change (the average of minutes 134	
  

-3 to 0) and then divided by the amplitude of the change (the average of minutes 3 to 6). Note that this 135	
  

normalization process does not affect any dynamics in the measured cost response. To solve for our 136	
  

unknown model parameters (τ and δ), we used weighted least-squares optimization to minimize the 137	
  

residuals between our model and measured data. The optimization uses the Levenberg-Marquardt 138	
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algorithm and was implemented with MATLAB’s nlinfit function. Due to prior normalization, best-fit 139	
  

amplitudes had a value of one (𝐴 =1). In order to avoid known convergence issues with delayed 140	
  

dynamic models (19), we visually confirmed the accuracy of the fitted time delays. We assessed the 141	
  

goodness-of-fit of our estimated parameters by calculating the R2 value between the model and our 142	
  

measured data. As a test of model sufficiency we also evaluated whether the addition of second 143	
  

process, modeled as an additional time-delayed first-order linear differential equation, produced a 144	
  

better fit to our data.  145	
  

To test whether the same model holds regardless of magnitude or direction, we first separately fit our 146	
  

model to each of the eight conditions (grouped only across repeats). We then used repeated measures 147	
  

ANOVA to test for differences in our solved parameters between the different magnitudes and 148	
  

directions. If appropriate, we then grouped trials of the same direction (increase or decrease in speed) 149	
  

or magnitude (absolute speed change of 0.25 or 0.50 m/s) and tested for differences using a Student’s 150	
  

paired t-test. For all tests, we accepted p < 0.05 as statistically significant. 151	
  

2.3 Estimating instantaneous energetic cost during dynamically changing gait 152	
  

We next assessed if our solved model could be used to estimate instantaneous energetic cost from 153	
  

measured breath-by-breath energetic cost. To accomplish this, we had two representative subjects 154	
  

return for a third day of testing. Our goal was to enforce instantaneous energetic cost profiles that 155	
  

differed from those upon which our model was based. To design varying instantaneous energetic cost 156	
  

input profiles, we leveraged the fact that subject’s energetic cost will increase as their step frequency 157	
  

deviates from preferred (18, 29). To quantify this relationship, our test subjects first walked on the 158	
  

treadmill at 1.25m/s for six minutes at nine enforced step frequencies that were at, above, and below 159	
  

preferred (0, ±5, ±10, ±15, ±20 % deviation from preferred step frequency). For each enforced step 160	
  

frequency, we took an average of the final three minutes of steady-state energetic cost data, leaving us 161	
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with nine data points that we then fit with a cubic polynomial (Figure 2B). Note that during these 162	
  

steady-state regions, the average measured energetic cost is equivalent to the average instantaneous 163	
  

energetic cost, as the gas exchange measured at the mouth has reached equilibrium with the gas 164	
  

exchange occurring at the muscle tissue level.  165	
  

Next, the solved polynomial was used to design step frequency profiles that, at constant treadmill speed 166	
  

of 1.25m/s, would evoke three distinct input muscle energy use profiles—a step, a ramp, and an 167	
  

adaptation profile (Figure 2A). The step profile, although the same shape as the original input profile 168	
  

on which we based our model, imposed different physical constraints on the subject, as treadmill speed 169	
  

was held constant and only step frequency was rapidly increased. The ramp profile was markedly 170	
  

different from that of the step in that step frequency was gradually increased over the course of 171	
  

minutes. The adaptation profile was designed to mimic a fast adaptation, where a subject’s 172	
  

instantaneous energetic cost may initially step up in response to a perturbation and then rapidly decay 173	
  

within tens of seconds. For each trial, treadmill speed was held constant at 1.25m/s and the subject was 174	
  

asked to match their steps to the changing metronome frequency (Figure 2C) while we measured 175	
  

energetic cost. The subjects completed three repeats for each input profile shape in randomized order. 176	
  

We then used two different approaches to estimate instantaneous energetic cost from measured cost, 177	
  

each approach having distinct strengths and drawbacks. Recall that for each subject, we have solved for 178	
  

an individualized model that maps instantaneous to measured energetic cost. Therefore, the inverse of 179	
  

this model will do the opposite: map measured to instantaneous energetic cost. This is the basis of our 180	
  

inverse model approach (Figure 1C). By passing a subject’s measured energetic cost data though their 181	
  

inverse model, we can directly compute the instantaneous energetic cost. However, it was necessary to 182	
  

first smooth the measured data. Passing unsmoothed data through the inverse model, which functions 183	
  

like a high pass filter, would effectively amplify high frequency components in the measured signal and 184	
  

these high frequency components tend to be dominated by the breath-by-breath noise. Although a low 185	
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pass filter could be used to first attenuate noise, it would indiscriminately attenuate all high frequency 186	
  

inputs, which may include rapid changes in instantaneous energetic cost that we are seeking to identify. 187	
  

Instead, to estimate the shape of the underlying energetic cost profiles, less the noise, we fit each trial 188	
  

of measured data with polynomials. A constrained least squares optimization, implemented using 189	
  

MATLAB’s lsqlin function, was used to solve for the best-fit polynomial parameters. Polynomial order 190	
  

was set such that no systematic pattern was observed in the residuals. The fitted curve was required to 191	
  

pass through the initial steady state value (0 after normalization) at the point of perturbation and had to 192	
  

reach steady state (1 after normalization) in the last 3 minutes of the trial. These constraints are 193	
  

reasonable given that the prescribed step frequencies were at steady state during these regions. We did 194	
  

not constrain the initial slope of the polynomial allowing for rapid initial changes in the smoothed cost.  195	
  

Our forward model approach can be used in situations where the experimenter has a good first 196	
  

approximation of the shape of the instantaneous energetic cost profile (Figure 1D). This shape is 197	
  

described with a set of parameters that are then optimized so that the generated input profile, when run 198	
  

through the subject’s model, produces an estimate of measured cost that best fits the actual measured 199	
  

energetic cost response. We used a Nelder-Mead Simplex method, implemented with MATLAB’s 200	
  

fminsearch function, to solve for the optimal parameter values. For the step input, a single parameter 201	
  

was optimized: the time of onset of the step. For the ramp input, two parameters were optimized: the 202	
  

time of onset and the time of offset of the ramp, which together dictate the slope of the ramp. For the 203	
  

adaptation input, three parameters were optimized: the time of onset, the amplitude of the peak, and a 204	
  

decay constant. Note that the initial and final steady-state amplitudes were not optimized, as 205	
  

normalization fixes them at 0 and 1, respectively.  206	
  

3.0 RESULTS 207	
  

We found that the dynamic relationship between instantaneous energetic cost and measured energetic 208	
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cost could be modeled using a first-order linear ordinary differential equation (Eq. 2). Moreover, we 209	
  

found that the same model appears to hold regardless of the magnitude or direction of the change in 210	
  

gait. We did not identify differing model parameters when each of the eight gait changes, of varying 211	
  

magnitude and direction, were fit separately (p = 0.102). When we then grouped across all trials of the 212	
  

same direction (increase or decrease in speed) we again found that parameters did not differ between 213	
  

directions (p = 0.500). The same was found when we grouped trials of the same magnitude (absolute 214	
  

speed change of 0.25 or 0.50 m/s) (p = 0.094). This indicates that the underlying dynamics were not 215	
  

significantly different irrespective of the applied magnitude or direction of the change in gait. For 216	
  

subsequent analyses all trials for an individual subject have been fit together. 217	
  

Our model described the dynamics of respiratory metabolic cost reasonably well for most subjects. 218	
  

When compared to the average response, the model accounted for 82-99% of the measured variability 219	
  

(Figure 3). When the model was compared to individual trials, without averaging, 18-87% of the 220	
  

measured variability was explained. This considerably larger range in goodness-of-fit is due to the 221	
  

variability between breaths in measured metabolic cost, and was expected given that we did not attempt 222	
  

to model breath-by-breath dynamics. Adding a second dynamic process, modeled as an additional time-223	
  

delayed first-order linear differential equation, did not appreciably improve our fits; visually no 224	
  

improvement was evident and on average only an additional 0.9% ± 1.0% of the variability was 225	
  

explained (mean ± SD).  226	
  

Across all subjects, model fits yielded an average time constant (𝜏) of 41.9 ± 12.0 s (mean ± SD). This 227	
  

means that 95% of the response to a step-like change input is completed within three time constants, or 228	
  

125.6 ± 36.1 s (mean ± SD).	
  We did not identify time delays (δ) that were discernable from zero for 229	
  

any of the ten subjects. Due to normalization, all amplitudes (𝐴) displayed in Figure 4 have a value of 230	
  

1. Therefore, the mathematical representation of our model (Eq. 3) simplifies to a transfer function of 231	
  

the form: 232	
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𝐻 𝑠 = 1 42𝑠 + 1     (3) 233	
  

This model enabled accurate estimates of instantaneous energetic cost from respiratory energetic cost 234	
  

measures. Using both our inverse and forward model approaches, we were able to produce estimates of 235	
  

instantaneous energetic cost from measured energetic cost that well matched the enforced step, ramp, 236	
  

and adaptation profiles (Table 1 and Figure 4). For the step and ramp input profiles, both approaches 237	
  

performed exceptionally well. The R2 values between the enforced instantaneous energetic cost profile 238	
  

and the model-produced estimates of instantaneous energetic cost were between 0.87-0.99 for 239	
  

individual trials. As a result, averaging measured energetic cost data across the three repeats prior to 240	
  

applying either approach did little to improve our estimates of instantaneous energetic cost. Thus, for 241	
  

the step and ramp profiles, it appears possible to accurately estimate instantaneous cost from a single 242	
  

trial of measured energetic cost data. Single trial estimates of instantaneous energetic cost were less 243	
  

accurate for the adaptation profile. For subject I, individual trial R2 values were as low as 0.26 and 0.38 244	
  

for the inverse model approach and forward model approach, respectively. For this subject, averaging 245	
  

measured energetic cost data across the three repeats prior to applying the inverse model approach or 246	
  

forward model approach improved R2 values to 0.66 and 0.75, respectively. Individual trial R2 values 247	
  

for the adaptation trials were substantially better for Subject II (0.77-0.88).  248	
  

4.0 DISCUSSION 249	
  

We found that a simple first order linear differential equation can approximate transient energetic cost 250	
  

responses during gait. When rapid step-like changes in instantaneous energetic cost were enforced, we 251	
  

observed a single underlying response featuring no discernable delay. On average, subjects took two 252	
  

minutes to reach 95% of the steady state metabolic cost value, with all but one subject reaching 95% 253	
  

steady state within three minutes. These same underlying dynamics held regardless of the magnitude or 254	
  

direction of the change in gait. Despite the collective effect of many sources of complexity—including 255	
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mitochondrial dynamics, gas stores, transit delays, and cardio-pulmonary control—a simple model 256	
  

explains the transient energetic cost response during walking. 257	
  

This model allowed us to produce reasonably accurate estimates of instantaneous energetic cost from 258	
  

respiratory cost measures. Our two approaches—the inverse model approach and forward model 259	
  

approach—resulted in similar estimates of instantaneous energetic cost, and when compared to our 260	
  

enforced cost profile, R2 values were typically greater than 0.90. Both methodologies were able to 261	
  

capture rapid changes in instantaneous energetic cost that were prescribed during the step trials, as well 262	
  

as gradual changes and discontinuities that were prescribed during the ramp trials. The poorest 263	
  

estimates of instantaneous energetic cost were found for the adaptation trials, where fitting the rapid 264	
  

decay proved somewhat problematic. These sorts of transient changes in cost are more readily distorted 265	
  

by breath-by-breath noise because there are fewer data points available with which to fit model 266	
  

parameters. Our adaption trial decayed to steady state with a time constant of 60 seconds, which 267	
  

equates to only about 20 breaths. Better estimates may be possible with improved noise removal 268	
  

techniques, improved fitting techniques, or through averaging over a greater number of trial repeats. 269	
  

Overall, the two approaches produced similar and seemingly accurate estimates of instantaneous 270	
  

energetic cost. However, each approach is subject to distinct limitations and requires different 271	
  

assumptions on the part of the user.  272	
  

The inverse model approach requires little advance knowledge of the underlying instantaneous 273	
  

energetic cost profile, but is greatly complicated by breath-by-breath noise. High frequency 274	
  

components of breath-by-breath variability in measured energetic cost are effectively amplified when 275	
  

passed through the model inverse, obscuring estimated instantaneous energetic cost. To reduce their 276	
  

contribution, while retaining our ability to fit fast changing inputs, we first fit the noisy metabolic cost 277	
  

data using a polynomial. We constrained the polynomial to pass through an initial steady state value at 278	
  

the point of perturbation, and to reach steady state at the end of the trial. For an experimenter, these 279	
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constraints require that the protocol be designed such that the subject begins and ends in steady state. 280	
  

(These particular constraints are not universal for every experimental paradigm—researchers should 281	
  

identify whatever constraints on the measured data are imposed by the experimental paradigm and use 282	
  

them to their fitting advantage.) Although we made no assumptions about the shape of the profile 283	
  

between the beginning and end steady state regions, complex profiles would not be fit well by a low 284	
  

order polynomial. In such situations higher order polynomials, splined polynomials, or all together 285	
  

different functions may be necessary to accurately fit the measured energetic cost profiles. This will 286	
  

inevitably introduce subjectivity, as the experimenter will be required to make decisions about what 287	
  

profile changes are ‘true’ and what is simply ‘noise’. 288	
  

Estimating instantaneous energetic cost using the forward model approach requires some advance 289	
  

knowledge of the profile shape. This knowledge may be based on the study design or additional 290	
  

measurements. For example, if the study design calls for a novel force to be rapidly applied to a limb 291	
  

one may reasonably assume an abrupt increase in instantaneous energy use, followed by an exponential 292	
  

decay as the subject adapts to the new force. One need not know the timings and magnitudes of the 293	
  

initial increase and subsequent decay as the forward approach employs optimization to estimate their 294	
  

values. Alternatively, one may deduce the profile shape from a measured physiological variable, such 295	
  

as the time course of adjustments to step frequency or muscle activity. It is also possible that the 296	
  

experimenter has a range of hypotheses about what the input profile shape may be. These hypotheses 297	
  

can be evaluated by optimizing each candidate input profile and testing which one provides the best fit. 298	
  

To illustrate this, we fit optimal step, ramp, and adaptation profiles to each of the three responses and 299	
  

found that each response was best fit by its respective profile shape (e.g. the enforced ramp was best fit 300	
  

by a ramp profile). Because the experimenter must make assumptions about the underlying profile 301	
  

shape, the forward approach introduces a bias based on the experimenter’s expectations. Moreover, 302	
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there may be situations where the experimenter does not have a reasonable first approximation of the 303	
  

input profile shape. 304	
  

In addition to the approach specific limitations described above, there are four more general limitations 305	
  

to our methodology and analysis. First, we treat our enforced instantaneous energetic cost profiles as a 306	
  

gold standard to which we compare our model estimates. Although we attempted to enforce a specific 307	
  

cost profile by controlling walking speed and step frequency, other uncontrolled gait parameters, for 308	
  

example stance time or muscle activity, may have caused instantaneous energetic cost to deviate from 309	
  

our desired input profile. As a consequence, our estimates may be better or worse than presented. 310	
  

Second, the identified model and its average parameters only apply to adult humans. Differences in size 311	
  

and phylogenetic history are both likely to alter the dynamic relationship of other animals from that in 312	
  

adult humans. Similarly, the identified model and its average parameters only apply to walking. While 313	
  

we found that a single process accurately captures the identified dynamic relationship between 314	
  

instantaneous and measured energetic cost, Whipp and colleagues have repeatedly found that there are 315	
  

two important processes in cycling, perhaps reflecting a difference in cardio-pulmonary control 316	
  

between the two tasks (37, 38). A fourth limitation of our model is that it can only be applied to 317	
  

walking tasks within the tested metabolic cost range. At metabolic rates above 400W, many subjects 318	
  

may breach the anaerobic threshold, causing oxygen stores to be depleted faster than they can be 319	
  

replenished and rendering our measured energetic cost a poor estimate of the underlying instantaneous 320	
  

energetic cost. At metabolic rates below 100W it is possible that more complex dynamics exist at the 321	
  

onset of exercise, as first described by Whipp and colleagues (37). Overall, our exact model can be 322	
  

used to estimate instantaneous energetic cost of walking at metabolic rates ranging from 100W to 323	
  

400W. Outside of this range, care should be taken to first identify the underlying dynamic relationship 324	
  

between instantaneous and measured energetic cost before applying our inverse or forward model 325	
  

approach.  326	
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Our methodology may prove useful for both post-hoc and real-time estimation of energetic cost. Its 327	
  

accuracy benefits from a personalized model for each subject, but for some situations, it may suffice to 328	
  

use the average dynamic model identified in the current experiments. As an initial test of this 329	
  

possibility, we simulated measured energetic cost to an adaptation input profile for a subject with an 330	
  

exceptionally slow time constant of 60s. We then compared instantaneous cost estimates using this 331	
  

subject specific time constant to that obtained if we assumed our average time constant (42s). Using the 332	
  

average time constant still made it clear that instantaneous cost adapted by demonstrating the 333	
  

characteristic rapid increase followed by a slower decay. As to be expected, R2 values dropped when 334	
  

using the average time constant, but nearly 90% of the variability was still explained. This general 335	
  

model is particularly useful because it allows experimenters to return to previously measured energetic 336	
  

cost data and estimate instantaneous energetic cost without the need for a subject specific model of cost 337	
  

dynamics. Another use for the identified dynamic model is real-time estimation of instantaneous cost. 338	
  

Kalman filters, and similar algorithms, leverage dynamic models of the system to help correct for noise 339	
  

and delays (11, 26). Real-time estimates of instantaneous energetics may prove useful for biofeedback, 340	
  

manipulating gait training based on energetic cost, or simply for online determination of when a 341	
  

research subject has reached steady state. 342	
  

An ability to assess instantaneous energetic cost during non-steady gait could unveil new insights into 343	
  

walking. People rarely experience metabolic steady-state conditions; less than 1% of real-world 344	
  

walking bouts last the requisite five minutes (21). The fields of locomotor adaptation and learning aim 345	
  

to shift our scientific focus from the steady state to this real-world behaviour. Energetic concepts—346	
  

such as economy, efficiency, and least effort—are often used to explain adaptations to novel 347	
  

environments or tasks. Yet, as researchers work to understand the neuronal circuitry involved in gait 348	
  

adaptation, and quantify the timescales over which adaptation occurs, they have been unable to 349	
  

effectively make direct comparisons to energetic cost during the adaptation itself. An understanding of 350	
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the role of energy use may help us understand how we adapt to changing environments, how we 351	
  

compensate for injury or motor control deficits, and how we learn new tasks. By presenting a 352	
  

methodology for assessing instantaneous energetic cost during adaptation and other non-steady gait 353	
  

conditions, we aim to provide our field with a tool with which we can investigate previously 354	
  

unanswerable questions. 355	
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FIGURES 453	
  

 454	
  

Figure 1: Experimental design. A. Experimental Set-up. To evoke known changes in instantaneous 455	
  

energetic cost, subjects’ walking speed (treadmill speed) and step frequency (metronome frequency) 456	
  

was enforced and the resulting breath-by-breath energetic cost response was measured using indirect 457	
  

calorimetry. B. We then modeled the relationship between instantaneous energetic cost (input) and 458	
  

measured energetic cost (output). Using this model we estimated instantaneous energetic cost from the 459	
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measured energetic cost response using two approaches. C. When using the inverse model approach, 460	
  

noisy output data was fit with a constrained polynomial, which was then passed through the inverse of 461	
  

our identified model to produce an estimate of instantaneous energetic cost. D. When using the forward 462	
  

model approach, we assumed the general shape of the input profile is known and described it by a set 463	
  

of parameters, which were then optimized so that the input profile, when run forward through our 464	
  

identified model, generated an output profile that best fit our measured output. Grey shaded boxes have 465	
  

been used to highlight what parameters were optimized for each processing technique. 466	
  

  467	
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 468	
  

Figure 2: A. We sought to enforce three differing but known input changes in instantaneous energetic 469	
  

cost. B. In order to identify what step frequency profiles would evoke these desired changes in 470	
  

instantaneous energetic cost, we identified each subject’s relationship between energetic cost and 471	
  

deviation from preferred step frequency. C. Using the solved relationship between energetic cost and 472	
  

step frequency, we designed step frequency profiles that would evoke our desired change in 473	
  

instantaneous energetic cost. The black line illustrates the step frequency commanded with a 474	
  

metronome and the grey line illustrates the subjects actual step frequency. All presented data is from 475	
  

Subject I. 476	
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Figure 3. Modeling the measured energetic cost response. The average measured energetic cost 478	
  

response (black line) to 24 rapid changes in instantaneous energetic cost (grey line) is shown for each 479	
  

subject.  The red line illustrates the model that best fits each subject’s response. Model time constants 480	
  

(τ) and R2 values for each fit are presented on the right hand side of each panel. Before we averaged the 481	
  

data, we normalized all instantaneous and measured energetic cost changes to unity by subtracting the 482	
  

initial steady-state values and dividing by the amplitude of the final steady-state values.  483	
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 484	
  

 485	
  

Figure 4: Estimating changes in instantaneous energetic cost. A. Subject I results. The enforced 486	
  

instantaneous energetic cost (input) and measured energetic cost response (output) are shown in black, 487	
  

in the left and right panels respectively for the step, ramp, and adaptation profiles. The red lines 488	
  

represent estimates from the inverse model approach, and the blue lines represent estimates from the 489	
  

forward model approach. R2 values calculated between the enforced instantaneous energetic cost 490	
  

profiles and the inverse model approach estimates of muscle energy use are shown in red text, while 491	
  

that for the forward model approach estimates are shown in blue text. Data corresponding to the 492	
  

median trial and average trial (shaded box) have been plotted. B. Subject II results. Note that for the 493	
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Subject II, the step trials lasted only 540s as apposed to 720s due to a protocol change during data 494	
  

collection. Despite this change, the time given was sufficient to allow the subject to reach steady state, 495	
  

allowing us to process these trials in the same manner as all other trials.  496	
  

  497	
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Table 1: R2 values between the enforced and the model-produced estimates of instantaneous energetic 498	
  

cost for both the inverse model and forward model approach. We collected three repeats for each of the 499	
  

step, ramp, and adaptation input profiles. R2 values from the three repeats have been ordered from 500	
  

highest to lowest. To produce the average value, we averaged the measured energetic cost data across 501	
  

the three repeats prior to applying the inverse model or forward model approach. Note that for each 502	
  

subject and each approach, we have plotted the data corresponding to the median and averaged trials in 503	
  

Figure 5. 504	
  

Input Trial Subject A Subject B 
Inverse Forward Inverse Forward 

Step best 0.98 0.99 0.99 0.99 
median 0.97 0.99 0.99 0.98 
worst 0.94 0.93 0.94 0.87 
average 0.98 0.98 0.99 0.99 

Ramp best 0.99 0.99 0.99 1.00 
 median 0.98 0.99 0.97 0.98 
 worst 0.98 0.99 0.89 0.93 
 average 0.99 1.00 0.99 0.99 
Adapt best 0.90 0.96 0.84 0.82 
 median 0.64 0.46 0.77 0.86 
 worst 0.38 0.26 0.79 0.78 
 average 0.75 0.66 0.84 0.88 
 505	
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